Review: Chain Rule - 10/28/16

1 Chain Rule

Chain Rule: $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example 1.0.1 Let $h(x)=\sqrt{x^{2}+1}$. We can break this up into $f(u)=\sqrt{u}$ and $g(x)=x^{2}+1$. Then $f^{\prime}(u)=\frac{1}{2} u^{-1 / 2}$ and $g^{\prime}(x)=2 x$. Then $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x=\frac{2 x}{2 \sqrt{x^{2}+1}}=\frac{x}{\sqrt{x^{2}+1}}$.

Example 1.0.2 Let $h(x)=e^{x^{2}-3}$. Let $f(u)=e^{u}$ and $g(x)=x^{2}-3$. Then $f^{\prime}(u)=e^{u}$ and $g^{\prime}(x)=2 x$. Then $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=e^{x^{2}-3} \cdot 2 x$.

Example 1.0.3 Let $h(x)=\frac{\sin (\cos (x))}{2 x-5}$. Then for the quotient rule, let $f(x)=\sin (\cos (x))$ and $g(x)=2 x-5$. Now to find $f^{\prime}(x)$, we need the chain rule. Let $z(u)=\sin (u)$ and $q(x)=\cos (x)$, so $z^{\prime}(u)=\cos (u)$ and $q^{\prime}(x)=-\sin (x)$. Then by the chain rule, $f^{\prime}(x)=\cos (\cos (x)) \cdot(-\sin (x)$. We also have $g^{\prime}(x)=2$. Then by the quotient rule, $h^{\prime}(x)=\frac{\cos (\cos (x)) \cdot(-\sin (x)) \cdot(2 x-5)-2(\sin (\cos (x)))}{(2 x-5)^{2}}$.

Example 1.0.4 Let $h(x)=\cos \left(\sqrt{x^{2}+3}\right)$. To start we can break it up as $f(u)=\cos (u)$ and $g(x)=\sqrt{x^{2}+3}$, so $f^{\prime}(u)=-\sin (u)$. To find the derivative of $g(x)$, we are going to need the chain rule again. Let $z(u)=\sqrt{u}$ and $q(x)=x^{2}+3$, then $z^{\prime}(u)=\frac{1}{2 \sqrt{u}}$ and $q^{\prime}(x)=2 x$, so $g^{\prime}(x)=\frac{x}{\sqrt{x^{2}+3}}$. Now we can use the chain rule for the overall function, so $h^{\prime}(x)=-\sin \left(\sqrt{x^{2}+3}\right) \cdot \frac{x}{\sqrt{x^{2}+3}}$.

Practice Problems

1. Find $\frac{d}{d x} \tan \left(x^{2}\right)$.
2. Find $\frac{d}{d x} \tan ^{2}(x)$.
3. Find $\frac{d}{d x} e^{\frac{x+2}{3 x}}$.
4. Find $\frac{d}{d x} e^{\sin (3 x)}$.
5. Find $\frac{d}{d x} \sqrt{x^{2} e^{x}}$.
6. Find $\frac{d}{d x}\left(3 x^{32}-17\right)^{100}$.
7. Find $\frac{d}{d x} \cos (\tan (x))$.
8. Find $\frac{d}{d x} \frac{e^{x+3}}{x}$.

Solutions

1. Let $f(u)=\tan (u)$ and let $g(x)=x^{2}$, so $\tan \left(x^{2}\right)=(f \circ g)(x)$. Then $\frac{d}{d x} \tan \left(x^{2}\right)=\sec ^{2}\left(x^{2}\right) \cdot 2 x$.
2. Let $f(u)=u^{2}$ and let $g(x)=\tan (x)$, so $\tan ^{2}(x)=(f \circ g)(x)$ (since we can think of $\tan ^{2}(x)$ as $\left.(\tan (x))^{2}\right)$. Then $\frac{d}{d x} \tan ^{2}(x)=2 \tan (x) \cdot \sec ^{2}(x)$.
3. Let $f(u)=e^{u}$ and $g(x)=\frac{x+2}{3 x}$. Then $f^{\prime}(u)=e^{u}$ and to find the derivative of g, we need the quotient rule. Let $z(x)=x+2$ and $q(x)=3 x$, so $z^{\prime}(x)=1$ and $q^{\prime}(x)=3$. Then $g^{\prime}(x)=\frac{3 x-3(x+2)}{(3 x)^{2}}=\frac{-6}{9 x^{2}}=\frac{-2}{3 x^{2}}$. Now we can use the chain rule to get $\frac{d}{d x} e^{\frac{x+2}{3 x}}=e^{\frac{x+2}{3 x}} \cdot \frac{-2}{3 x^{2}}$.
4. Let $f(u)=e^{u}$ and $g(x)=\sin (3 x)$, so $f^{\prime}(u)=e^{u}$. We need to use the chain rule to find $g^{\prime}(x)$. Let $z(u)=\sin (u)$ and $q(x)=3 x$, then $g^{\prime}(x)=3 \cos (3 x)$. Then $\frac{d}{d x} e^{\sin (3 x)}=e^{\sin (3 x)} \cdot 3 \cos (3 x)$.
5. Let $f(u)=\sqrt{u}$ and $g(x)=x^{2} e^{x}$, so $f^{\prime}(u)=\frac{1}{2 \sqrt{u}}$. We need the product rule to find the derivative of $g(x)$. Let $z(x)=x^{2}$ and $q(x)=e^{x}$, so $z^{\prime}(x)=2 x$ and $q^{\prime}(x)=e^{x}$. Then $g^{\prime}(x)=2 x e^{x}+x^{2} e^{x}$. Then $\frac{d}{d x} \sqrt{x^{2} e^{x}}=\frac{1}{2 \sqrt{x^{2} e^{x}}} \cdot\left(2 x e^{x}+x^{2} e^{x}\right)$.
6. Let $f(u)=u^{100}$ and $g(x)=3 x^{32}-17$. Then $f^{\prime}(u)=100 u^{99}$ and $g^{\prime}(x)=96 x^{31}$. Then $\frac{d}{d x}\left(3 x^{32}-17\right)^{100}=100\left(3 x^{32}-17\right)^{99} \cdot\left(96 x^{31}\right)$.
7. Let $f(u)=\cos (u)$ and $g(x)=\tan (x)$, so $f^{\prime}(u)=-\sin (u)$ and $g^{\prime}(x)=\sec ^{2}(x)$. Then $\frac{d}{d x} \cos (\tan (x))=-\sin (\tan (x)) \cdot \sec ^{2}(x)$.
8. We're going to need the quotient rule for this. Let $f(x)=e^{x+3}$ and $g(x)=x$. To find $f^{\prime}(x)$, we can use the chain rule: let $z(u)=e^{u}$ and $q(x)=x+3$, then $z^{\prime}(u)=e^{u}$ and $q^{\prime}(x)=1$, so $f^{\prime}(x)=e^{x+3} \cdot 1$. Then by the quotient rule, $\frac{d}{d x} \frac{e^{x+3}}{x}=\frac{e^{x+3} x-e^{x+3}}{x^{2}}$.
